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Abstract 

The paper surveys the approximation and convergence properties of the h-p 

version of the finite element method, the basic theoretical results together 

with the main ideas of the proofs.  Numerical examples are given. 



1.   Introduction 

The h-p version of the finite element method is characterized by the 

family ^ = {311} of meshes 311 covering the domain fi defining the elements 

9", M =  {7} and by the distribution q(3Jt)  of the degrees p(?)  of the 

elements 3" € 311.  The shape functions are the usual "pull-back" polynomials 

i.e. mapped polynomials of degree p(J) defined on the standard element T. 

The degree p(J) can be different in different directions in T.  The 

standard element can be a triangle or square in two dimensions and cube, 

wedge or simplex (tetrahedron) in the three dimensions.  We denote by 

i 

S(3Jl,q) c H (fi)  the finite element space and by N(3R,q)  its dimension. 

The main problem in the finite element method is to estimate 

(1.1) inf   |u -ZlHi(Q) = «(u.f.q.N). 
*€S (3Jl,q) 

N(3n,q) £ N 

Assume for example that 3    is a (reasonable) family of quasiuniform meshes 

on a (reasonable) domain Q  c IR , n = 2,3 and that the degree of all 

elements is the same i.e.  p(3") = p s  p  p > 1, 3" € 3J1.  Further assume that 

u € H (fi).  Then we have 

(1.2) #(ii,y,q,N)   * CN^711  llulljjs 

with fi = min(pn, s-1). 

If we know apriori more about u,  for example that u is analytic on 

fi then we have 

(1.3) «(u.y.q.N) * CN~Po/n 

where C is independent of N. 

Assume now that we will consider the family of quasiuniform meshes as before 

with the uniform degrees of the elements but assume only that p £ 1.  Then we 



have for u analytic on Q 

(1.4) »(u.y.q.N) s  Ce * 

where C and y are independent of N.  (The mesh achieving (1.4) is a 

fixed one and p(5H—>0 as N—>». ) 

We see that the rate of convergence depends on 

a) properties of the exact solution u 

b) the admissible set of spaces SCJJt.q), JJt e %. 

We do not know the exact solution in advance, but for a large class of 

engineering problems we can find a characterization of the solution which can 

be exploited.  Obviously the assumption that u e H (Q)     or u is analytic on 

Q is an example of a characterization of solutions of interest. 

In practice we have to consider a family of problems characterized by 

the useful data.  Typically in the structural mechanics we deal with the 

problem characterized by piecewise analytic data, i.e. the boundary of the 

domain is piecewise analytic as well the material properties, loads, etc. 

For this class of problems the assumption that u € H (Q) or u is analytic 

on fi is very inappropriate.  If the domain Q    has corners in two dimensions 

or vertices and edges in 3 dimensions then u is not analytic on Q  and u € 

HS only for small s and the fact that the solution u is analytic inside 

fl is not employed. 

In this paper we will survey the major results concerning the 

performance of the h-p version for solving elliptic problems with piecewise 

analytic input data.  We will show that for all these problems the h-p 

version leads to exponential convergence with respect to the number of 

degrees of freedom.  More precisely we will show that for a family &    of 

meshes and degrees distribution q(JJl) we have 



(1.5) |u-uFElHl £ C*(u,y,q,N) * Ce 
yw 

where a = 1/3 in two dimensions and a = 1/5 in three dimensional problems. 

Constants C and y > 0 are independent of N.  They depend on the solution, 

the domain Q,   the distortion of the used elements, the family ? of used 

meshes as well the distribution q(Jfl) of the degree of elements.  The family 

of meshes which lead to (1.5) is a special one and the mesh includes in 3 

dimensions the "needle" elements along the edges of the domain. 

We will discuss separately the two and three dimensional case and 

present the major ideas and results, but without detailed proofs which will be 

referred to.  The two dimensional case will be discussed in more details 

because it offers some analogies for the 3 dimensional case.  The numerical 

examples in 2 and 3 dimensions will be given also. 

The survey papers about various aspects of the h,p and h-p version 

we refer to [1] [2] [3]. 



2.  The h-p FE version in two dimensions 

2.1. Preliminaries. 

2 Let Q c R = {x ,x ) = {x I x. e R, i = 1,2} be a bounded domain with 
1 R f *   \ f '   "\ 

the boundary dQ.     We will assume that 9fi = U T   = T with r    being 
1=1 

Jordan curves and 

,.,  M(i)  ... 
r(l) = U  fU),    i = 1 N 

j=l  J 

where F.1  are analytic arcs    i.e. T.      = {x. = <p.   ,(£), x = 
J J      1   i.J     2 

\}>.   . (?) I C € I = [-1, 1]> with 0>. .(£), I/I. . (£) analytic functions on I 
i > J i > J     i > J 

and  I^V^jCOl2 + |^ 0i(j(O|2 ^ « > 0}.  Here  (^.^^.J  are 

Cartesian coordinates of T.1 .  By T.   we denote the open arc, i.e. the 

image of  I =(-1,1).  The domain fi is R-connected.  We will assume that the 

curve T  is the boundary of the infinite component of the complement of fi. 

An example of a domain Q    of interest is given in Fig. 2.1.1. 

Orientation of the curves is shown in the Figure 2.1.1 also.  The endpoints of 

the arc T(.l), i = 1 R, j = 1 M(i) are denoted by A(.*|, A(.lJ(i.e. 

Aj-1 = (*>i.j(-1)' *i,j{-1]h AjU = (*i,j(1)' *i,j(1))' Aon = 4lv   and 
called vertices of Q.     The measure of the internal angle at A.   is denoted 

by w.  .  We will assume that 0 < w. =s 2TI. 
J J 

We will also understand the Jordan curve in an obviously generalized 

sense when parts of different arcs could coincide so that a slit domain could 

also be considered (with w.  = 2TI) 



A(1)-A(1) 

Fig. 2.1.1.  The scheme of a domain with a piecewise 

analytic boundary 

Note that we can have w.  = n    at some vertex A.   (for example kr     ). 
i J 6 

The vertex has to be introduced when T    is not the analytic continuation 

of r.  .  We can of course place an additional vertex at any place of F. 

This has to be done because below we will assume that boundary condition is 

analytic and is of the same type on every arc. 

„  .,   n .  „  D=  Nr D=  ,,     =(i) N„  r  D= _ |,    „(i) Further let T =    Tu T,  r = U. . ^ T.     ,  r = r - r = U. .„". 

where D,N are the subsets of the set {i,j I i = 1,...,R, j = l,...,M(i)}. 

For simplicity we will assume that  T * 0.  Otherwise we have to add the 

usual conditions of solvability and uniqueness. 

In Figure 2.1.1 we have R = 2.  We will use R = 1 in what it follows 

and will write M instead of M(i), A.  instead of A.  , etc.  We note that 
J J 



all our arguments and results are valid in the general case too. 

If the arcs are the straight  lines  then we say that ß is a polygon. 

Otherwise we speak about a curvilinear polygon. 

Let further B^J be the balls with the radius r. and the center in 
J J 

f r )   r 
the vertex A. and let ß. J = B .J n ß.  We will assume that r < p, j = 

J J      J J 
—(r )      —     — 

1,...,M,  and p is sufficiently small so that dß j r\  T c T   u T , 

ß J n ß l    =  0 for every i * j    and where 3ß.Fj  is the boundary of 
J     i J 

ß.jJ.  Finally we denote Q^  =ß- U ß. J  with r= (r1 rM). 

The typical example is shown in the Figure 2.1.2. 

^■5.(1) 

Figure 2.1.2.  The partition of the domain ß. 

1 11 
By H (ß) we denote the usual Sobolev space and H (ß) = {u € H (ß) | 

u=0 on Dr>.  Let us now define the space £(ß) c HD(ß), ß = (ß1,...,ßM), 0 < 

ß. < 1, i = 1 M.  For a = (a ,a ), a. £ 0 integers,  i = 1,2, |a| = o^ + 

a2 let 



D u = 
a"1 a"2 
xi  x2 

and for m £ 0 an integer let 

|Dmu|2(x) = ^T  |Dau|2(x). 

lot | = m 

Further denote 

$.(x) = |x - A.I = dist (x,A ), j = 1 M. 
J J J 

Let u be such that there exist constants C., d , and 0 < ß. < 1, 

j = 1 M, j = 0 M so that for any a = (a ,a2), o^ £ 0 integers 

i = 1,2: 

i) for x e n(.rj): 

(1.1) |Dau|(x) * Cd* a! *-(ßJ+ai+a2_1)(x) 

li) for x e Q 

(1.2) .  |Dau|(x) * CQd" a! 

where d. =   (da),   d(.2)),   dU)  >  1,   da =   (d(.1))ai(d(.2))aa,   a! -= a.!a.! ,   0!   = 1. 
JJJJ JJ i     «s 

By £(ß) we denote the set of all functions u satisfying (1.1), (1.2). 

Let us underline that Q      overlaps the domains Q. j .  Hence in 

this overlap area the function u € £(ß) under consideration satisfies both 

conditions i) and ii).  We always will assume an overlap without mentioning 

(r) it explicitly and write often Q only.  The description of the space 

£(ß) depends on r, nevertheless this is not essential because the constants 

C and d in (1.1) and (1.2) are not explicitly specified.  On the other hand 

the dependence on ß is essential.  The assumption 0 < ß. < 1 guarantees 

that £(ß) c HX(n)  and £(ß) c C°(5). 



2.2.  The boundary value problem. 

Let us consider the problem 

(2.1a) -A u = f in fi, 

(2.1b) u = 0 on Dr, 

(2.1c) |H-g on Nr. 

We understand the problem (2.1) in the weak sense.  Find u e HQ(Q)  such that 

1 
for any v e Hn(fi) 

„,   ,   f 5u 5v 

'a 

du    dw 
ax2 ax2 

= f fv + f gv 
J a J Nf 

holds. 

We will assume that the functions f and g are such that the solution 

u e £(ß)  for some ß dependent on Q,   more precisely ß.     depends only on 

the internal angle w.. 

In [4] [5] [6] we have analyzed in detail the space of input data g 

and f for which u € £(ß) and gave a detailed description of these spaces. 

As special case we have shown that u € £(ß) with properly selected ß. 

dependent on w. if 

a) function f is analytic on Q 

-      N- 
b) g is analytic on every arc T. c T 

Remark 2.1.  In [4] we have analyzed the regularity of the solution u of the 

boundary value problem for general elliptic operator with analytic co- 

efficients on Q    and have described the spaces of g and f that u € £(ß). 



Remark 2.2.  In [6] we have analyzed the regularity of the solution u of the 

elasticity problem and have shown that u € £(ß) when input data are 

piecewise analytic. 

Remark 2.3.  In [7] we analyzed the eigenvalue problem.  We have shown that 

the eigenfunctions belong to the space £(ß). 

Remark 2.4.  We restricted ourselves to the case that u = 0 on  I\  In the 

above mentioned papers we have shown (as special case) that if u = g 

with g analytic on the arcs T. e    T    we get also u e £(ß).  The 

restriction u = 0 on T    will simplify our approximation theorem.  In 

general when u *  0 on  T we have to replace the nonhomogeneous Dirichlet 

boundary condition by a properly selected sequence of functions.  We will not 

address here this problem.  (See for more e.g. in [8]). 

Let us underline that in the engineering practice we essentially always 

deal with piecewise analytical data and hence the solution under consideration 

always belongs to the space £(ß). 

It is essential to deal with the spaces of solutions which are as small 

as possible but will include practically all the cases of engineering 

importance. 

2.3. The elements 

As usually, we will assume that the domain fi is covered by the mesh 3JI 

which partitions the domain Q    into elements 9" and will consider a family 

!F of admissible meshes 3JI e %.     Hence we will write DJl = {3"}.  We will 

consider first family !F of meshes with quadrilateral elements. 

2 
Let us denote by D the standard quadrilateral element,  D = I , I = 

(-1,1) i.e. 



D = <T)1,    TJ2 |   |TJ1 I < 1,  |T)2| < 1}. 

We will assume that any 9 € 3H is an image of D by the one to one mapping 

My, i.e. 

9 = {x1> x2 | x1 = X1(i71,7)2)> X2 = X2(T)1(ii)2), T^, T)2 € D}. 

About X., i = 1,2 we will assume that there is v(?) > 0 such that 
l 

i) for any  |a| = m > 0 and any 7) € D, t  = 1,2 

(3.1) |DaX£(T))| ^ CQd
m m! i>, m = 1,2... 

ii) The Jacobian determinant 9 satisfies 

(3.2) C^2 * |9| = 
a(x1?x2) 
3(7^,T^) 

In (3.1) and (3.2) v    dependents on the element 9" but the constants 

C ,C ,C ,d  are indepndent of 9 e Oil € ?.  Obviously v    is related to the 

size of the element 9". 

Remark 3.1.  If the boundary of the element lies on the boundary T then 

there is obviously a relation between the constants in (3.1) (3.2) and 

description of the analytic arc T.. 
u 

Remark 3.2.  We will assume that every vertex of Q    is also the vertex of an 

element. 

Remark 3.3.  Let us note that from (3.1) we see that X.(f)),i = 1,2 are 

analytic functions on D and hence they can be extended beyond D in some of 

neighborhood of D. 

Remark 3.4.  Our assumptions imposed on the elements guarantee that the 

aspect ratio of J e OR e &    is bounded. 

10 



Obviously any quadrilateral with the straight sides satisfies the 

conditions mentioned above.  For example for a.,b.,c, i = 1,2 of order 

one and 

xi = Xi(T,l'7,2) = xi + v'(ai
(1+r'1

)(1"'r»2) + 

+ b (1+TJ )(l+ij ) + ci(l-T}1)(l+7)2)) 

maps D onto 3" (shown in the Figure 2.3.1) provided some conditions on the 

coefficients a.,b.,c.  are imposed, 
ill 

(x°+4c1v,X2+4c2v) 

(xy, xu
2) 

(x°+4b1v,x°+4b2v) 

,o „or     (Xi+4a1v,x^+4a2v) 

l ^2 

D 
"P- 

i 

1 

■   T 

2 

*l1 

Fig.   2.3.1.     The element    3 

Let now 3 be a triangular element.  Then we will assume that 3 is 

the image of the master element T = {i)  ,T)   | (TJ ,t\   ) € D, i)„ < T) } c D by the 

mapping M~ which satisfies (3.1) (3.2) and M„(D) c Q.     Hence 3 is a 

half of MytD). 

We now describe the elements of the meshes we will consider. 

1) Elements in Q 
(rj) 

We will consider two kinds of elements 3 and 3 separately. 

The element    3.  Let J c fi. 
J 
(rj) then A. €  3.  Denote 

J 

(3.3a) K.(3) = min $.(x), 
J     xe3 J 

11 



(3.3b) K.O") = max $.(x). 
J     xe3 J 

We assume that there is a constant A, 1 < A < oo such that 

K.(3) 
(3-4) rm*k 

-J 

and 

(3.5) C K.(3) * WJ) =£ C K.(3). 

It is easy to see from (3.1) and (3.5) that there exists A* > 1 such that 

(3.6) A* £ -•*  
K.(3) 
-J 

and with    ||J||    being the measure of    3    we get 

(3.7) C K2.m  s  ||3||  == CK^(J). 

In general C and C in (3.5) and (3.7) could be different. 

The element    3 .  Let 3 c Q. j , then A. e 3" , and we assume that 

(3.5) holds (but not (3.4)). 

Constants C, C.A.A* in (3.4), (3.5) and (3.7)  are independent of 

3" e 3JI € %. 

2) Elements in Q 

Let 3 € ^r/2).  Then let 

(3.8) C * v(3) £ C 

with C, C independent of 3 e OH e %. 

Condition (3.8) shows that there is only finite number of elements in 

Q:r   (dependent on various constants in (3.1) (3.2), (3.8) but independent 

of 311 € 30.  Elements of Jfl are curvilinear with the sizes proportional to 

the distance from the vertex (except those elements which contain the vertex). 

12 



2.4. The meshes and the finite elements. 

Let us consider a family 3 of meshes on ß.  A mesh f e ? is a 

partition of fi into the set of elements 3 e JJI which satisfy conditions 

given in the Section 2.3 and fi = U 3.  To every 3 e 311 we have associated 
JeJJt 

the analytic map M„..  Obviously we can speak about the vertices and sides of 

3.  We will assume that the elements of 3 € 3H satisfy the usual conditions 

i.e. if 3., 3. € JJl then either 3., 3. are disjoint or have common vertex 
i  J i  J 

or common sides.  If ¥.,  W.    have common sides then the mapping M_ , M_ 
i   J J i       Ji 

coincides on the common side. 

(r-) 
Let us now consider the mesh of elements in fi. J .  Because (3.3) 

and (3.4) we can speak about the layers of the elements.  The zero layer 

consists of all elements which (closure) includes the vertex A..  Denote by 

£      the k-th layer of elements.  Then we define £,     layer as the set of all 

elements 3 c Q.  j  such that they do not belong to the layers £., j = 

1,2 k-1 but 3 n U 3  * 0.  From the conditions (3.1)-(3.5) we see 
36^-! 

that there is a constant K  dependent only on the constants in (3.1)-(3.5) 

so that any layer £    consists of at most Kn elements. 

We will now consider the family 3 of meshes (of the elements described 

in Section 3.2) which is characterized by the size of the smallest element 

in the mesh.  We will assume for given a- <  1 and n > 0 an integer we have 

for 3n
(j) cD(.rJ}, A. e 3n

(j) 

0      J     J   0 

(4.1) C crn £  K(3^J)) ^ C o-n. 

Hence the mesh JJl is characterized by the parameters  (cr.n)  and we 

will write 0JU<r,n).  Note that with increasing n, the number of elements in 

Q. J  is growing, while the number of elements in Q is uniformly 

bounded.  In fact we may assume that the mesh in ß     is independent of 

13 



n. We show the typical mesh in the neighborhood of a vertex in the 

Fig. 2.4.1.  The layers of-the elements are shadowed.  In general  (cr,n)  can 

depend on j, i.e, can be different in every vertex neighborhood. 

Nevertheless we will assume that  (a,n)  are independent of .j. 

Fig. 2.4.1.  Typical mesh with shadowed layers 

Mesh of this type will be called a geometrical mesh  with the factor <r.  We 

can also have cr = 1.  Then the mesh 0Jl(<r,n) will have number of elements 

independent of n. We can then assume that the mesh is a fixed one.  If we 

know apriori that in the neighborhood of some vertices no singularity will 

occur, then we select <r. = 1 in these neighborhoods.  This is typical for 

example when we impose the symmetry condition on some part of the boundary. 

Remark 4.1.  Denote by 9?J  the element in the k layer.  Then using (3.1) 

(3.3)(3.4)(3.5) and (4.1) we have 

(4.2) Co- p„  < K(ST,  ) < Co- L 

with p. < 1, I -  1,2  (depending on the constant in (3.1)-(3.5).  In practice 

we mostly construct the meshes such that (3.1)-(3.5) hold together with 

14 



(4.3)                   C<rn-£sK(^J)) . C«rn-k 

i.e. we have 

(4.4)                      p. = a-,   i = 1,2 

—(k)       (k) 
Remark 4.2.  Denote by K    resp K          the maximum resp minimum of K(3") 

over all elements in the k   layer.  Then YK   £ r. and hence number of 
-k     J 

layers does not exceed Cn whether (4.1) (resp (4.2)) or (4.3) is used. 

The shape functions of degree p(J) are as usually given on the master 

element D or T.  On D we will assume that the degree is separately in every 

variable.  For simplicity we will assume that the degrees of the elements are 

uniform although the nonuniform distribution is more effective, but would have 

the same rate of convergences. 

Finally we will denote by S(3Jt,p) = S(3JUo-,n), p) = S(o\n,p) c H*(Q)  the 

finite element space under consideration. 

2.5. The h-p version of the finite element method 

The finite element method for the model problem (2.1) reads: 

Find u 6 S = S(0fl,p) = S(cr,n,p)  such that 

(5.1)               B(Ug,v) = F(v),   Vv € S(o\n,p), 

where 

(5.2b)               B(Ug,v) = 
Tdus öv + öus dv ' 
lax! dXi  Sx2 9x2 

t 

Jn 

(5.2b)                  F(u) = f v + g v. 

• Q               J Nr 
Then with 

(B(u,u))1/2 = ||u||E 

15 



we have 

l|uo " US"E = int l|uo - *"E 

where un is the exact solution defined in the Section 2.2.  Obviously 

1 
||u|L = |u|  where by |u|, we denoted the seminorm in H (Q). 

Let us now formulate typical theorems.  We outline the main ideas of 

their proof in the Section 2.6.  For details we refer to [9], [10], [11]. 

Theorem 2.5.1.  Let u  be solution of the problem (2.1).  Assume further 

that for any x e Q and any a = (a ,a ), a. £ 0 integers we have 

(see (1.2)) 

(5.3) |D%0| *C0d£a!. 

Consider now the mesh    JJHo\n)    with    cr = 1    and    p(9")  = n,   9" e 311.     Then 

(5.4a) I^O'^IH
1
^)  

=      cj
nf '"o-^'tfW)  SCe'*n 

2€S(o-,n,p) 

-rN1/2 

(5-4b) \uo-us\nHci)=    c)
nf        '"O-^'HMO) *Ce 

^eS(o-,n,p) 

where y, y > 0 and C > 0 depend on the solution, the elements, the domain 

but are independent of n and N; N is the number of degrees of freedom 

(N = dim S(cr,n,p)). 

Remark 5.1.  The condition (5.3) is equivalent with the assumption that u is 

analytic on fi. 

Remark 5.2.  Because <r = 1 the number of elements is independent of n. 

Hence the method is the p-version of the finite element method. 
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Theorem 2.5.2.  Let u  be the solution of the problem (2.1).  Assume that 

un e £(ß)  as defined in the Section 2.1.  Consider now the geometric mesh 

3H((T,n) with o- < 1 and p(3") = fin, /i > 0, or properly chosen.  Then there 

exist C, 7f,   V >  0 such that 

(5.5a)        K-^IH1
«» "  er"*"    'U0 ~ ^H1 (Q) * ° *  • 

xeStcr.n.p) 

-*N1/3 

(5.5b)     K^W) =  *nf , luo~x^HQ)  * Ce 
^eS((r,n,p) 

where C.r, y are independent of n and N. 

Remark 5.3.  If a- <  1  then number of elements in the mesh JJHcr.n)  is 

proportional to n, and for p = /in  (5.5b) follows directly from (5.5a). 

In the Theorem 5.2 the assumption u e £(ß)  is essential.  As we 

mentioned in the Section 1, this assumption is satisfied practically for every 

problem in structural mechanics where all the input data are piecewise 

analytic. 

The h-p version simultaneously changes the mesh and the degree of 

elements.  In practice often the geometrical mesh m(cr,n)  is a priori 

constructed for fixed a-    and n = nn and then p is increased i.e. the 

space S(c,nn,p) with p increasing is used.  Then we see two phases in the 

behavior of the method.  In the first phase the convergence is very similar as 

in the h-p version with the exponential convergence and in the second phase 

for large p the performance is similar as in the p-version with an 

algebraic rate of convergence. 

Remark 5.4.  The constants 7,   y depend among others on <r and ß.     In 

[12] we analyzed one dimensional case and found that <r « 0.15 is optimal. 

In the next section we will see some numerical results related to the question 

17 



of the optimal selection of <r. 

Remark 5.5.  The h-p version for elliptic equations of order 2m was 

addressed in [13]. 

Remark 5.6.  We formulated theorems 1 and 2 for Laplace equation only. 

Because the essential feature of these theorems is the approximation, they 

hold in general setting when u € £(ß), for example for the elasticity 

problem. 

2.6.  Numerical experiments 

In this section we will show a typical numerical example. Consider the 

elasticity problem on a cracked domain shown in the Fig. 2.6.1a. Because we 

will consider the symmetric problem, only the half domain will be considered 

as show in Fig. 2.6.1b. 

1 

'*2 

\ A5 
1 

A7 CM X1 

A, A, 

A3 A4 ■ 

2 

> 
'*2 

A4 A3 

A5 A, A3 X1 
I > 

Fig. 2.6.1.  The scheme of the cracked domain 

a) The cracked domain, b) the symmetric half of the cracked domain. 
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We will assume that material is isotropic homogeneous with Poisson ratio v = 

0.3.  On the boundary r of Q    depicted in the Fig. 2.6.1, we impose 

nonhomogeneous traction (Neumann) conditions so that the exact solution is 

-1/2 
symmetric stress intensity mode for which the stress behaves as 0(r   ). 

Hence we have only singularity in the origin in the vertex A..  Therefore the 

mesh will be refined only in the neighborhood of the vertex A. (i.e.  <r = 1 

in the neighborhood of all other vertices).  Because of the symmetry we will 

consider only the problem on the half of the domain as shown in Fig. 2.6.1b. 

We will use <r  = 0.15. 

In the Fig.   2.6.2 we show the sequence of the meshes with    n    layers 

(not drawn in scale). 

-1 A, 
MESH Mr 

1 x,     -1 

Xg 

MESH M, 
1 x, 

-1 

MESH M„ 
-1 

4 X„ 

[/* M1^ Ho3 

MESH M0 

> >x2 i x2 

\ / / 
\ / / J k 

■1 A,<! ho< x1   - 1 Afij f— cr 
■ 

MESH M, MESH M. 

Fig.   2.6.2.     The sequence of  the geometric meshes    3II((r,n),   n = 0,...,5. 
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We will use p = n + 1 in our example and uniform p.  Based on the 

(n) -rN1/3 
Theorem 2.5.2 we expect that the error  ||e  ||  is bounded by C e 

with C and y independent of n and N.  We will assume that 

n ta>i "V
U

FE "E „ rfn, -rN1/3 

(6.1) lie  »ER ■   ||  ||   * C(n)e 
0 E 

and determine the value y from the two successive values of ||e  H^. 

Then we compute for every n the value C and y.  The results are given in 

the Table 2.6.1.  Although Theorem 2.5.2 gives only an upper estimate it seems 

that y(n)  and C(n)  converge as n—-x».  This is not surprising in our 

particular case, but it cannot be concluded neither from the theorem or the 

theory presented here. 

Table 2.6.1.  Performance of the h-p version 

n      p      N       N1/3    He^ll^/.     y(nj       C(n) 

0 1 9 2.08 60.92 0.741 1.455 

1 2 48 3.63 20.23 0.740 1.455 

2 3 121 4.95 7.61 0.776 2.098 

3 4 256 6.35 2.57 0.720 1.810 

4 5 477 7.82 0.90 0.670 1.683 

5 6 808 9.31 0.33 0.670 1.688 

In the Fig. 2.6.3 we show the error  ||e  W—^    as function of N.  We 

plot the graph in N   x lg ||e n ||_, % scale.  Then the graph would be the 

straight line if the error would obey exactly (6.1). 
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N 
25  50  100 200 400  600 8001000 1200 1500 

en 
111 

© 

10  11 

Fig. 2.6.3.  Performance of the p and h-p version 
for S(<r,n,p), <r = 0.15 

In the Fig. 2.6.3 we also show the error of the p-version i.e. the error 

using S(0.15, n, p) for fixed n and 1 £  p s  8.  The h-p version graph 

connects the points giving the accuracy for p = n + 1.  We see that we obtain 

a straight line.  Table 2.-6.1 and Fig. 2.6.3 shows that the (6.1) gives 

not only the upper estimates but also describes well the behavior of the 

error.  From the Fig. 2.6.3 we also see that for given n the error behavior 

as function of p can be divided into two phases. In the first phase when p 

£ n + 1 we see exponential convergence while for p £ n + 1 we see only an 

algebraic one. 

The performance depends among others on the value of &    and ß.  In one 

dimensional setting c « 0.15 is optimal, see [12].  In the Fig. 2.6.4 we 

show the performance of the h-p version for p = n + 1 as function of <r. 

The Fig. 2.6.4 is drawn in the same scale as Fig. 2.6.3.  We see that the 

value a- =  0.15 gives the optimal results. 
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400      600    800 10001200 

DC 
LU 

Q) 

0.5 
0.3 „   c =^a=0.08 

P=6  o=0.15 I 

6       7 

N1/3_ 

10     11 

Fig. 2.6.4.  The performance of the h-p version for various a- 

Remark 6.1.  We have shown the performance of the h-p version as function 

of N.  Of course for higher p the stiffness matrix is more dense and the 

cost of construction of the stiffness matrix is higher too.  Hence the right 

performance description will be graph of the computer cost x accuracy.  This 

problem was addressed in [14] [15]. 

Remark 6.2. The meshes for the h-p version have a special character. The 

usual available mesh generators are not producing the appropriate meshes for 

the h-p version yet. 
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2.7. Outline of the theory. 

In this section we will briefly outline the theory leading to the theorem 

2.5.1 and theorem 2.5.2.  The main ideas in two dimensional and three 

dimensional case are similar, but technicalities are much more difficult in 

3 dimensions. 

1) The regularity problem. 

The first major problem is to characterize the space of solutions under 

consideration.  The space should be, on one hand, as small as possible, to 

give the possibility to employ its special properties, but on the other 

hand the space has to be large enough that it would cover most problems in 

engineering practice.  As was mentioned earlier typical engineering problems 

are characterized by piecewise-analytic input data.  Hence we need to describe 

the spaces of the solutions of such problems. 

There is a large literature about the regularity of the solution of 

elliptic problems.  Nevertheless those theories are not directed to the goals 

of numerical solutions.  In a series of papers, [4] [5] [6] [7] we developed 

the theory which characterizes the regularity of the solutions in the terms of 

countably normed spaces (see (1.1), (1.2)) which is very advantageous for the 

analysis of the h-p version.  This theory in the cited papers encompasses 

larger class than the one used here. 

We do partition the domain in the (overlapping) areas and characterize 

the regularity in these areas in a special way.  In two dimensional settings 

(r ) 
we distinguish between vertex neighborhood (denoted above by Q. J )  and the 

internal domain (denoted by Sl^        ).  In 3 dimensions we have considered four 

regions separately. 

2 
2) Approximation of functions defined on the standard square D = I , I = 

(-1,1). 
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The major theorem is 

Theorem 2.7.1.  Let D°u e L2(D), a = (a^o^), 0 s  a£ s  t£ + 1 t£ £ 0, 

£ = 1,2.  Then there exists a polynomial P(x ,x2) of degree t^,^ in 

xrx2 such that for 0 £  o^ s  1 and 1 < s£ * t£, £ = 1,2 we have 

■.ot 

(7.1) 

HD-(u-P)||-2(D) *C 

(t2-s2)! 

(tt+Si ! + 2(1-0!))!   Z^ L2 

0sß2<l 
(D) 

(t2+s2 + 2(l-a2))! I HD1 ,ßi.S2+l„,|2 
U|IL2(D) 

O^ßi^l 

For 0 ^ a s 1, ax = 0 

(7.2) ||Da(u-P)(±l,x2)||^2(I) * C 
 (t2- 
(t2+"s2 

tz-^)'  y iiDßi-s2+1uii 
2   + -2(1-02»!       L     " " 

U|IL2(D) 
O^ßi^l 

For    0 s ax s l,   a2 = 0 

,a 
(7.3)   ||D"'(u-P)(x1,±l)||^2(I)  * C 

(tx-S!)! V    linsi+1'ß2n||2 
[t1+Sl + 2(1-«!))!     L    "D U"L2(D) 

0Sß2£l 

(7.4) (u-P)   (±1,   ±1)  = 0 

„ai+a2 

We denoted    D 1    ^u = — 
ax"1 ax?2 

in  (7.1)  -   (7.3)  and thereafter. 

1        2 

We see that smoothness of the trace of the function  (u - P)  and its 

norm on the sides of D is estimated by various derivatives of u in D.  As 

a simple corollary from the theorem 7.1 we get 

Theorem 2.7.2.  Let tf»(x) = (u - P(x ,x2)), Xj = x2 = x e I then for 

|a| =1,  (i.e.  x lies on the diagonal of D), 
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a, „2 l|D>|| 
L2(I) 

£ C (D) 

(7.5) 

(t2-s2)i 
(t2+s2)! I IID' «X.S2+1 ,„2 U|IL2(D) 

Osoqsl 

The constant C in Theorem 2.7.1 and 2.7.2 is independent of t,s.  For the 

proof in the 3 dimensional setting we refer to [16]. 

3) Regularity of the transformed function on the standard square 

As said above, there is a mapping M~ which maps D onto 9".  We 

assumed that the mapping M„ has properties given in (3.1) (3.2).  We also 

have assumed that the solution u € £(ß).  Consider now the geometrical mesh 

OJUo-.n)  and let J € Q(.rj) 

(1.1) 

(7.6) 

and J n A .= 0.  Then for x € 9" we have from 
J 

ina ,, , _ „ ,a  , ^-(ß+ai+o^-l) 
jD uj (x) s Cd a! (K) 

= C er (?) 
<*2 

a! K  , 

where we wrote K instead of K. defined in (3.3), d ,d2 instead 

d(.1), d(.2), and ß, C instead of ß., C. 
J    J J  J 

Let now 

(7.7) 

then U(i))  is defined on D and we have 

U(7)) = u(Mg.(T)))) 

Theorem 2.7.3.  For any integer s & 0 and any 7) e D we have 

For 0 £ a s 1 

(7.8) 
,s,a2. s .  1-ß 
D ' 2

U(T))| S  Cd S! K 

For 0 s a £ 1 
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(7.9) |Dttl'S U(u) | * CdS s! K1 ß, 

where the constants C,d are independent of TJ and s. 

Quite similar result holds for 9" € Q^     .       The elements 3"Q for which 

Wn  n A. * 0 have to be treated separately as shown below. 
0   J 

4) The approximation on the element J 

We use now the estimates (7.8), (7.9) together with the results of the 

Theorem 2.7.1 and obtain 

Theorem 2.7.4.  There exists a polynomial P(r) .T)-)  of the degree p in T^ 

and if)„ such that for 0 s a. * 1, i = 1,2 
2 l 

(7.9) ||Da(U-P)||22(D) , Cp
1"^ F(d)V-2(1-V} . 

(7.10a)      ||Da2(U-P)(±l,7,2)||22(I) s c{(c
2(1-ß)(F(d))Pp3"2(1_a2)} , 

(7.10b)     HDai(U-P)(T,1,±l)||22(I) s C^^-^fFfd))^
3"^1""!3} . 

(7.11) (U-P)(±l, ±1) = 0 . 

Function F(d)  is increasing but for any d, F(d) < 1.  The function F(d) 

is obtained from (7.1) by the optimal choice of s for given degree of the 

polynomial.  For detail properties of this function we refer to [9], [10]. 

From (7.9)-(7.11) we see that the convergence rate in p is exponential. 

Using now the transformation M~  and utilizing (3.2) we get 

-1 
Theorem 2.7.5.  Let <p  = M_ P,  where P is the polynomial in the 

Theorem 2.7.4. Then 
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^ (u-«p)ll^2(J) ^ C ^ ||Da(U-P)||22(D)(  1 = 1.2 

(7.12) 

'ox. 
1 l«l=l 

where 0 < Q < 1.  It Is independent on K,    but depends on the constants in 

(3.1) and (3.2) 

The elements which have a vertex in the A. have to be treated 

separately. Using the assumed properties of u it is easy to obtain 

Theorem 2.7.6. Let J s Jli is such that W    r\ A. * 0.     Then we have 

(7.13) lb!- C^-u)l|22(sro) ,Qc
2(1-ß),  1 = 1.2 

Function <p    is here mapped bilinear function. 

5)  The adjustments of local approximation 

The results in 4) allow to estimate the approximation by a polynomial 

in every element separately.  Nevertheless this construction of the 

approximation does not lead to the function which is continuous across the 

boundaries of the elements i.e. conforming elements.  The continuity is 

guaranteed only in the vertices of the elements because the approximation 

coincides here with the approximated function.  Hence we have to make 

corrections which will delete these (sides) discontinuities .  This is made 

as follows.   Let 3".  and 9"_ are two elements with common edge £ and let 

I n  T = 0.  Assume that S  and S? are the sides of the standard square D 

which by M-  and M™  are mapped on the edge £. 

Without any loss of generality we will assume that S = S„ = S.  Let 

U., P., i = 1,2 be the mapped functions U and the polynomial P considered 

in the Theorem 2.7.4.  Then obviously U = U  on S and ip  = P - P is a 
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polynomial of degree p on S and \ji  = 0 in the end points of S. Using 

(7.10 a) we get with 0 < Q < 1 

(7.14) W|2   * C0c2(1-ß) + S
2(1_ß))QP. 

HX(S) 

Without any loss of generality we will assume K == K„ and construct on D a 

polynomial Q of degree p (in T) and 7) ) such that Q = \p    on S and 

Q = 0 on 9D - S and 

(7.15) HQJI   .       s cm\   , 
1 HX(D) HX(S) 

We use now instead    P    the polynomial    Pj-Qi     and 8et 

(7.16) IIU 1-(Pn-Q1 )ll   . *  IIU.-PJI +  IIQ  || 
1       l     1    H^D) X     *  HX(D) X  IT(D) 

=s C(||U -P  || +   ||0|| ) 
1     X  IT(D) IT(S) 

, c(K
2(1-ß) QP)1/2. 

Hence the error of the finite element method can be estimated by the errors in 

the single elements as described in Theorem 7.5 and 7.6. 

6) Proof of the Theorem 2.5.1, and 2.5.2. 

Let us first address Theorem 2.5.1.  By the assumption the mesh HTI\    has 

m(o-,n)  elements (independent of m)  and u satisfies (5.3).  Using the 

results in the previous paragraphs we construct function <p  e S(o\n,p), cr = 1 

such that 

||u-a>||2 s CmZP = Cm e"2<Xp,     a > 0,     0 < Z <  1, 
E 

which yields (5.4a).  Because the number of degrees of freedom N (= dimension 

2 
of S(c,n,p))  is of order mp  we obtain (5.4b). 

Let us now address Theorem 2.5.2. We divide the elements of the 

(r/2) (r ) 
geometrical mesh in three groups.  Elements in R0   , elements in Q. j 
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  fr )    
j = 1 M but such that J n A. = 0 and V  c ß. j , 9" n A * 0.  Obviously 

we have at most CM elements (with M being the number of vertices) of the 

third group.  Using Theorem 2.7.6 the error (square) on these elements in the 

third group is estimated by CM((rn)  ~ß  where ß = max ß .  In the second 

(r ) group in every ß. J  we have at most Cn layers and the number of elements 

in every layer is uniformly bounded (see Sec. 2).  Using Theorem 2.7.5 we see 

(r ) 
that the error (square) in the domain fi. J  can be bounded by 

s Co2n(l-ß) p-2n(l-ß) Qp 

where Q < 1  is independent of p and o\  Hence the total error (square) in 

the entire Q    (composed from the errors of the three mentioned graphs)  is 

for p = pi  n bounded by 

cr<r * <r2n(1-?) ♦ M* ]2ll""Yl'- CZP, Z < 1 :H» . [*tf" "]"] . 
provided that /i was properly chosen depending on er,   p,   ß. 

Obviously the number of elements in 3JI is bounded by Cn and we get 

(5.5a), (5.5b) then follows from the fact that the dimension of the 

„     .   2 
space of polynomials of degree p in y    is p . 

So far we have assumed that the elements are quadrilateral.  If they are 

triangular then we use first the approximation on the square D and the only 

difference is in the adjusting phase.  Here we use Theorem 2.7.2 for the 

estimate on the diagonal of the square D.  The extension from the sides of 

the master triangle inside it is standard.  Of course we have to see that at 

the diagonal of D the function is the polynomial of degree 2p, but this 

influences the constants but not the rate in the bounds. 
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3.   The h-p version in three dimensions 

In this section we will formulate the results for the 3 dimensional 

problem which are analogous to those mentioned in Section 2.  We will 

underline similarities and differences between the two and three dimensional 

results. 

3.1.  Preliminaries 

Because of simplicity we will consider only polyhedral domains although 

our results have much more general character. 

Figure 3.1.1 shows a typical domain.  The planes KLNO and MLNO coincide 

(crack type).  By A,B...  we denoted the vertices  of the domain.  The edges 

of the domain Q are straight lines with the vertices at their end.  For 

example ÄB is an edge.  We have in the Figure 3.1.1 only edges where the 

integral angle * n.   Nevertheless for the same reasons as in 2 dimensional case 

we can or have to add additional vertices or edges, e.g. the edge BL etc.  A 

set of edges creates the boundary of a face, which is a polygon.  For example 

BCHIJKLMG are the vertices of a face.  As in the two dimensional case 

we will assume that on every face a boundary condition is of the same type. 

In our case we have only plane faces.  Nevertheless the edges and faces can be 

curved too. 

Fig. 3.1.1.  The polyhedral domain 
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In the two dimensional case—in the Section 2.1—we partitioned the domain in 

the neighborhood of the vertices and rest of the domain.  The three 

dimensional case is more complex.  Here we have to partition the domain in the 

following types of regions. 

1) Neighborhood of the edges (not close to the vertices). 

2) Neighborhood of the vertices edges (close to the vertices and edges). 

3) Neighborhood of the vertices (not close to the edges). 

4) The regular region. 

Let us describe these regions more precisely. 

1) The neighborhood of the edge Q '  (not close to a vertex). 

Assume that the edge e.    under consideration is 

(1.1) € = {*.  ,y.  ,y.     | x1 = x2 = 0, 0 < x3 < 1}. 

Then we denote for R > 0, S  > 0 

(1.2) Q 
2        2 

{(x  ,x2>x3)  e fi   |   x1+x2=r<R 

5 < x    <  1  - 5} 

and assume that R, 5 are sufficiently small. 

Let us consider the edge AB in Figure 3.1.1 as an example, Fig. 3.1.2 

shows the region Q R,8 

Fig. 3.1.2.  The edge neighborhood 
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Obviously the domain Q  '       can be described well in the cylindrical 

coordinates. 

2) The neighborhood of the vertex A and the edge e.    (the vertex-edge 

neighborhood).  Assume once more that the edge is given as in (1.1) 

Let x = {*.  ,x  ,*.  ),   p  (x) = x! + x2 
+ X3>  r ^ = xl + X2* sin ** = r/p 

and denote 

Q  '     = {x € Q I p(x) s  R, sin <p <  sin $} 

with R and $ sufficiently small. 

R $ 
The domain £2 '  associated to the edge AB = e    and vertex A is shown 

■vj A 

in the Figure 3.1.3. 

Fig. 3.1.3.  The vertex-edge domain 

R $ 
Obviously the domain Q  '       can be described well in the spherical 

coordinates. 

3) The neighborhood of the vertex (not close to the edges). 

Assume now that in the vertex A is the end of the edges e.. , 
■ >« n 
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For example in the Fig. 3.1.1 vertex A is the end of the edges e.    = AB, 

—     — R $. 
•e_ = AD, €„ = AF.  Denote now by Q  '   \     the edge-vertex domain introduced 
2      3 «i,A 

R $.   R $. 
above.  We will assume that $.  are sufficiently small that 12 ' .   n Q  '   {  = 

l e.\ , A   e j, A 

0 for i * j.  Then we define 

QR = {x e Q, p(x) < R, x «S nR,*i., i = 1 n}. 
A -6| I A 

4)  The regular region. 

p s   R A    R 
For the given domain we defined the domains fi ' , Q  '   \,  Q..     Then we 

define c£ = n - U fiRi6i- U J2R,$iA - UflR. 
0        ei     . €i , A  . A 

e  '   €,A  l    A 

Let us now make the comments about selection of the parameters in the 4 

particular domains we have introduced. We will assume that 

1)  The domains of one category (i.e. edge or edge-vertex, or vertex 

domains) do not intersect.  On the other hand we will assume that the 

R      D 5       R (b       R 
parameters are selected to that ß. u U ß ' * u U Q  '   ! uU Ü. = Q.  (Note 

0  i €l    i,A€i*A  A A 

that the values R are different for different regions).  The regions of 

different categories may intersect (i.e. partially overlap) so that any 

entire element 3" of the used mesh will be in one (or more) domains with one 

exception.  Element having the vertex coinciding with the vertex of the domain 

Q  — a "vertex element" has not to be entirely in any one region we 

introduced.  This exception is made for practical reasons related to the mesh 

R (r) 
generator. We see that the domain Q      is analogous to the domain S2n 

introduced in the Section 2.1. 

3.2.  The spaces and the model problem 

Analogously as in the Section 2.1 we introduce the spaces of functions 

which norm is different on every neighborhood introduced in Section 3.1. 

1) The neighborhood of the edge    e.    {not close to the vertex);   the 
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For example in the Fig. 3.1.1 vertex A is the end of the edges e.    = AB, 

.e„ = AD, -e„ = AF.  Denote now by fi ' \     the edge-vertex domain introduced 
2        3 -6i > A 

above.  We will assume that $.  are sufficiently small that Q  '   \  n fi ' 3.   = 
1 <>\  , A     -oj , A 

0 for i *■  j.  Then we define 

fiR = {x e fi, p(x) < R, x « n^'*i. i = 1 n>. 

4) The regular region. 

For the given domain we defined the domains Q  '   ,  Q  '   \,  Q..     Then we 

define t£ = Q -  U ÄRi5i- U QR,$1A - Ufi
R. 

0     e €l   €,A *t'A  A A 

Let us now make the comments about selection of the parameters in the 4 

particular domains we have introduced.  We will assume that 

1)  The domains of one category (i.e. edge or edge-vertex, or vertex 

domains) do not intersect.  On the other hand we will assume that the 

R       R ä R A R 
parameters are selected to that !!. u U !! ' ' uUß ' ! uUß. = ß.  (Note 

0  . et   lfA€i.A  A A 

that the values R are different for different regions).  The regions of 

different categories may intersect (i.e. partially overlap) so that any 

entire element J of the used mesh will be in one (or more) domains with one 

exception.  Element having the vertex coinciding with the vertex of the domain 

n — a "vertex element" has not to be entirely in any one region we 

introduced.  This exception is made for practical reasons related to the mesh 

R (r) 
generator. We see that the domain £ln    is analogous to the domain ßn 

introduced in the Section 2.1. 

3.2.  The spaces and the model problem 

Analogously as in the Section 2.1 we introduce the spaces of functions 

which norm is different on every neighborhood introduced in Section 3.1. 

1) The neighborhood of the edge    e.    (not close  to the vertex);   the 
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R (S 
neighborhood    a"   .     As before we assume that the edge e.    is given in (1.1) 

and nR'5 by (1.2).  For given ß, 0 < ß < 1 we define the space £g(ße' ) 

R ä 
of functions u on Q  '     such that 

 p X 
i)  u is continuous on fi ' 

ii) for any a = (a ,a ,a ), a ^ 0 integers 

(2.1) |D°W) - u(0>0)x3)| s  Cda|r(x)r(ß+ai+a2-1)a! 

a3 
(2.2) |^-u(0,0,x3)|iCdJa3! 

dx3 
3 

where we denoted 

d = (dt>d2(d3), d. > 1, da = d^d^3 

a! = a ! a2! «3!, 0! = 1, |a| = |a1+a2+a3l, 

a|a|u 
D u = a*»^ 

and in (2.1) and (2.2) the constant C is independent of a. 

R $ 
2) The neighborhood      Q  '   i ,   (the vertex-edge neighborhood). 

€■1 , A 

Let x e (Xj.X2.X2), p2(x) = xj + x2 + x3, r2(x) = x2 + x2> sin <p = r/p. Let 

R $ 
0 < ß„ < 1/2, 0 < ß„ < 1.  Then by £_ 0 (fi '.) we denote the space of all 

1 <L Pi.Pi  €,A 

R $ 
functions u on fi '.  such that 

€., A 

-R $ 
i)  u is continuous on Q '. 

■e, A 

ii) for any a = (a^.a    a3), 0 £ o^ integers 

(2.3) 
|Da(u(x) - u(0,0,x3)| * 

Cp-(ß1+|a|-l/2)(sin?))-(ß2+a1+a2-l)daa! 
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(2.4) |.iÜ(u(o,0,X-) -  u(0,0,0)| s  C p-(ßl+a3_1/2)d%_! 
ax£3    3 3 3 

where C is independent of a. 

R 
3) The neighborhood    Q    of the vertex    A (not close to the edge). 

Let 0 < ß < 1/2 then by £R(
n
A) 

we denote the space of all functions u 

on Q.  such that 
A 

-R 
i)  u is continuous on Q. A 

ii) for any a = (a ,a ,a ), 0 s  a.  integers 

(2.5) |Da(u(x) - u(0.0,0)| *  Cp-(ß+|a|"1/2)daa! 

and C is independent of a. 

4) The regular region    QQ. 

R R 
By £0(Q_.) we denote the space of all functions u on fi  such that 

p (J u 
—R 

i)  u is continuous on Qn 

ii)  for any a = (a.,a ,a ), 0 ^ a.  integers 

(2.6) |Dau| s  Cd°a! 

and C is independent of a. 

As was said above we assume that the regions are overlaping. We define 

the space £0(Q)  as the space of all u defined on fi such that after 
P 

constraining them on the regions fi ' , fi ' , Q.     and Q      they will belong 

to £0(Q
R'5), £0 0 (n

R,*)( £0(f2R) and £(QR).  (We used R which are ß    e ßltß2    e,,k        ß    A 0 

different in mentioned neighborhoods.) 

Analogously as in Section 1 we will consider the problem 

(2.7a) -Au = f on Q, 

(2.7b) u = 0 on Dr, 

(2.7c) ^ = g on  T. 
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1 
We will understand the problem (2.7) in the weak sense.  Find u e H (Q) = 

{u 6 H1(n), u = 0 on  r} such that for any v e  HQ(Q) 

3 

Jn^aXi SXi     JQ jNr 

holds. 

We will assume that on every face of the boundary of fi either u = 0 

or -^  = g and g is analytic on the (closed) face where it is defined, 
on 

Further we will assume that f is analytic on Q.     In this case we will speak 

about the problem (2.7) with analytic input data.  Then we have proven in [18] 

Theorem 2.1.  Let u be the solution of the problem (2.7) with analytic input 

data.  Then u € £_(ß) for properly selected ß. 
p 

We see that in 3 dimensions the problem and the description of the 

regularity of the solution is essentially similar as in two dimensions but 

much more complex. 

3.3 The elements 

We will assume that the domain fi is covered by the mesh JR which 

partitions the domain Q    into element 9" and 3JI = -O"} where J is an 

element.  We will now define elements and their properties in various regions 

we have defined in Section 3.2.  For simplicity, we consider only elements of 

curved "brick" type i.e. elements which are images of a standard cube.  In a 

similar way as in Section 2 the results hold for tetrahedral which are the 

3 
images of a part of the standard cube.  Let D = I , I = (-1,1) be the 

standard cube with local coordinates t) = (TJ ,T)„,T)„) , i = 1,2,3. 

Now we describe the elements in the various regions introduced in 

Section 2.3. 
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R 5 
1)  The elements in the edge neighborhood Q  '   . 

We will consider two kinds of elements,  3 and 3"  separately. 

The element 3.  Let ¥  c nR'5 (i.e. distance of 3 to the edge e is   € 
_      3 

positive) be the image of D, D = I , I = (-1,1) 1 by a mapping M»..  Assume 

that M„ is a one to one mapping of D onto 3 with 

3 = {x | x. = XAT)),   v  e D, i = 1,2,3} 

and X. (i)) are analytic functions on D. 

Denote 

(3.1a) K(3) = min r(x), 
xe3 

(3.1b) K(3) = max r(x) 
xe3 

We assume about 3 and M the following: 

i)  There exists constant 1 < A < oo such that 

(3.2a) |§}sA 

ii) For  |ccI = m, m > 0,  m an integer and any 7) e D 

(3.2b) lüYtT))! S  C0d™ m! (c, i = 1,2, 

(3.2c) |DaX3(n)| s  C0d" m! H, H < HQ 

-R,S, 
with C  and H independent of m and K (and H  such that 3 € Q^'   ) 

iii) The Jacobian determinant  |J|  satisfies 

CJHIC
2
^ |J| = 

a(x1,x2,x3) 
9(T)I,T72 %) 

(3.2d) 

SC2EK2 

where C  and C.  are independent of K and H. 
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Obviously A > 1  in (3.2a).  Using (3.2a-d) we easily see that also 

(3.2e) 0\>-A* 

where A* > 1 depending on constants in (3.2b,c,d).  Let us note that the 

constants A, A*, C , d , C , C , are not mutually independent; there are 

relations between them.  Further we assume that these constants are the same 

for all elements of the meshes Oil e 3. 

2)  The element 3 .  The element 3  is the image of D by the mapping M™ 
  e. -e J 

satisfying the conditions (3.2b,c,d) and with one edge of 3  on the axis 

X„ which is a part of the "edge e    of the domain 0,    i.e.  r n 3 *  0.  For 

concreteness and without any loss of generality we assume that 

X^-l.-l.T^) = X2(-l,-l,7)3) = 0 

Remark 3.1:  We see from (3.2a)(3.2e) that the size of the element 3 in 

(x.,x )  is of the order of the distance of 3 from the origin i.e. the edge 

e and the size of the element in the variable x„ is of order H.  This 

means that the element 3" is a "needle" i.e. has a very large aspect ratio. 

In the variables x ,x„ the element 3" has the same character as in the two 

dimensional case. 

R $ 
2)  The elements in the vertex-edge neighborhood Q  ' . 

1)  The element 3.  Let 3 c nR'*  (i.e. 3 n T = a)     be the image of D 

by an analytic mapping M_.  We assume that 

3 = {x|x. = X.(T)), 7) e D, i = 1,2,3} 

where X.(TJ) are analytic functions with the properties spelled out below. 

Let 
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(3.4a) K  (9") = rainp(x), 
X€9" 

(3.4b) K. (9") = max p(x), 
xeJ 

(3.4c) 

(3.4d) 

K (?) = min sin <p(x), 

K9(3") = max sin <p{x) 
xeW 

About the element J and the mapping M<_ we will assume the following: 

i) There exist constants 1 < A., A < w such that 

(3.5a) M7) < A 

(3.5b) ^22 < A 

ii)    For     |a|  = m,   m > 0    an integer 

(3.5c) |D
0£

X1(TI) I   * CQdm m!   KI(C2, i  =  1,2 

(3.5d) |D"X3CTI)|   * CQdm m!   K 

with Cn independent of m,K.,K2> 

iii) The Jacobian determinant  |J|  satisfies 

(3.5e) Cffä s   |J| 
a(x1,x2,x3) 
S( ^,172,1)3) 

<   C   K3K2 

~ T12 

where C.  and C.  are independent of K , K . 

*  * 
Combining (3.5a-e) there also exist A , A„ so that 

(3.5f) MÜ > A* 
Ki(y) " l 

(3.5g) MH> A* 
KgO") " 2' 
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where A. , A„ > 1 depend on the constants in (3.5a-e). 

Remark 3.2.  We see from (3.5a) (3.5b) that the element proportions depend on 

K  and K      and its size is of the order of the distance to the origin and 

axis x„. 

The element 3 .. We assume that 3" .  is image of D by the mapping M» 
   e,A e,A J 

satisfying the properties (3.5c-e) but instead (3.5ab) we will assume only 

(3.5a) and that one edge of 3  .  lies on the axis x  which coincides with 

the edge e  i.e.  3   n r * <t>      but A €  3 ..  For concreteness we will 

assume that X (-1,-1,7»3) = X2(-l,-1,7)3) = 0. 

Remark 3.3.  We described only the elements for which A <£  3". 

Elements 3 for which A € 3 will be addressed in the subsection 5 below. 

3)  The elements in the region &.. 

Let 3 c fi.  be as before the image of D so that 
A 

3 = {x | x. = X.(7)), 7) e D, i = 1,2,3} 

and X.(T))  are analytic functions with the following properties.  Let 
l 

(3.6a) K(3) = min p(x), 
xe3 

(3.6b) K(3) = max p(x). 
xe3 

Then we will assume the following: 

i)  There exists a constant 1 < A < oo such that 

(3.7a) 0] *  A. 

ii)    For     |a|   = m,  m > 0    integer 

(3.7b) mVl   S C0d™ m!   K,   i = 1,2,3 
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with C  independent of m and K. 

iii) The Jacobian determinant  |J|  satisfies 

(3.7c) CK * |J| = 
3(Xi, X2, X3) 
d (7h, V2 »^3) 

,cK
3 

where C and C are independent of K.  Combining (3.7abc) we also get 

(3.7d) 
K(J) > * 
K(9") ~ A 

where A > 1 depending on the constants in (3.7abc). 

Remark 3.4.  We see that the element has not large aspect ratio and its size 

depend on the distance from the vertex A. 

Remark 3.5.  Here we do not address the element "3    with A e 3"; it will be 

addressed in the subsection 5 below. 

4)  The elements in the regular region Q_. 

Once more let 3" e Q      and 3 be image of D by the mapping My = {Xi> 

i = 1,2,3.  Let 

(3.8) K = max (dist x,D - 
xe3" 

i) We will assume tha.t for  |a| = m, m > 0 integer 

(3.9a) IDVCTJ)! S  C0dJJ m! K 

with CL independent of m and K. 

ii) The Jacobian determinant  |J|  satisfies 

(3.9b) CK S   |J| = d(Xi,X2,X3) 
5(-ni,T)2.T)3) 

,CK3 

where C and C are independent of K. 
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R 
From (3.9a,b) it follows that the volume of any J 6 Q  is bounded from below 

and so only finite number of elements 3" e fi  exist and K    is equivalent to 

the diameter of 9". 

Remark 3.6.  All elements in Q      have no large aspect ratio. 

5) The vertex element 9\. 
A 

So far we did not address the element 3.  such A e 3^.  In all previous 

cases we have assumed that the (entire) element 3" is in one (or more) 

domains.  About the vertex element we will assume that in general 9" is not 

R $  R -' 
necessarily in the interior of any of the domains n 'A> nA-  Let A e 9".  We 

will assume that 9"  is the image of D by the mapping My = {Xi> i = 1,2,3. 

Denoting diam 3" = K    then"we will assume that (3.5 bcde) (3.7 ab) hold. 
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3.4 The mesh and the finite elements 

We will consider a family ^ of meshes on n.  A mesh 3H e ^ will be a 

partition of fi into the set of elements 3" e M,     U  = Q.  We will assume 
3€3Jl 

that the elements 3" are curvilinear bricks which properties were described 

in the Section 3.3.  For simplicity we are restricting ourselves to the case 

of brick elements only, although the theory holds for tetrahedrons in the 

similar way as in two dimensions the triangular elements were treated. 

To every 3" e  3JI we associate an analytic mapping M^. which is defined 

on the standard cube and 3" is the image of the cube by the mapping Mg..  In 

an obvious way we can speak about the vertices, edges or faces of the elements 

3" e 311.  As usually we will assume that if 3"., 3". e 3J1 then either 3\ n W    = 

d>    or W.  n W.    is a common vertex of 3".  and 3". or W.  nW,    is a (common) 

entire edge or entire face of 9".  and 3"..  If 3"^3". have common edge or 

face we assume that the mapping M^  and M„  have the usual properties 
Ji       J j 

guaranteeing the continuity of the finite elements.  The meshes consisting of 

elements described above have a special character of a geometrical mesh in the 

neighborhood of edges and vertices.  This follows from (3.2a) (3.2e), (3.5ab), 

(3.5fg) (3.7a) (3.7d). 

We will consider the family 3- of meshes characterized by two parameters 

(o-.n) analogously as in two dimensions.  Consider the edge e = {x. = x_ = 0, 

0 < x < 1} and the vertex A = (0,0,0). 

R 5 
1)  The mesh in the edge region Q  '   .     Here the mesh is geometric in 

(x ,x2) with 

K(3" ) s  On. e. 

In the x variable the series of the elements are independent of n, 

i.e., the mesh is fixed in the x„ direction; see (3.1), (3.2).  We can 
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and 

(analogously as in two dimensional case) speak about the layer (in x. .x^) 

and the level which is a sequential number of element in x  direction.  The 

mesh hence has n-layers and ^(independent of n) levels.  Any layer has at 

R rS 
most K elements and hence the total number of elements in Q  '       is 0(n) e. 

similarly as in 2 dimensions. 

R $ 
2) The mesh in the vertex-edge region Q  ' . 

The mesh has geometric character in (x ,xj and also in x3- We can 

also speak here about the layers (in x ,x ) and levels in x,,.  The mesh (see 

(3.4), (3.5)) is such that 

K_(J ,) £ C<rn 
2  e, A 

Co-n s      min K (ST) * Or11. 
R $ 
e.,k 

By the analogous argument as in the two dimenional settings we can see that 

R $ 2 
the number of elements in fi '. is of order 0(n ). 

e,A 
R 

3) The mesh in the vertex region Q  . 

Here the mesh is geometric in the p(x) variable and quasiuniform in the 

two other variables (see (3.6), (3.7)) with 

Orn ^ min K(J) £ Or11. 

A 

R $ 
Hence the number of elements in Q  '.     is of order 0(n). 

■e, A 

p 
4) The mesh in the regular region £2Q. 

Here the mesh has number of elements independent of n.  Hence the number 

of elements in Q^    is of order 0(1). 

5) The set of vertex elements. 

Here we have 
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Can  £ diam (9" ) *  On. 

Obviously we have 0(1) vertex elements. 

Remark 4.1.  Similarly as in 2 dimensions (see remarks 4.1 and 4.2 in the 

Section 2) we have analogous inequalities for K(J).  For example let the 

element 7  c Q '. be located in the k  layer and j   level.  Then 
•e, A 

C(Tnp^k * K2(y) * C(Tnp2"
k, 

and 

with 0 < PJ.P2 < !■ 

C<rnPl
k *  KjCn * C0np2

k 

In practice we construct the mesh with p. = p = <r.  The number of elements 

R $ 
in the region Q  '.     can be estimated analogously as in the two dimensional 

case.  Similar estimates for the elements located in other regions are 

analogous. 

The shape functions are given on the master elements which in our case is 

the unit cube D.  We will assume that the elements are of degree pO")  in 

every variable i).,   i = 1,2,3 separately.  For simplicity we will assume that 

p(9") = p i.e. the degrees are uniform although we could consider p(9") 

different for every element and different in every direction.  This would 

increase the effectiveness of the method.  The space of the finite elements is 

denoted by S(0Jt,p) = S(o-,n,p) c Hg(fi). 

3.5. The rate of convergence of the h-p version. 

In the Section 3.4 we have described the family of the meshes 3- 

characterized by two parameters  (o-,n).  Given the exact solution ufi with 

the properties given in the section 3.2 we follow the framework outlined in 

the Section 2.7.  First we construct the approximation element by element 
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and then the corrections which guarantee the conformity of the elements. 

By a detailed analysis of the approximation of the functions u € £(Q) 

we can show (see [16]) that for 

p(J) = p = fin, fx > 0 

R £   R $   R 
there exists a function %  e S(<r,n,p)  so that in any regions Q^'   ,   Q^'A> QA> 

fin we have 

(5.1) «V^tfdJ) "^ 

where y > 0 depends on the constants ß.  in ~ß(^)  introduced in 

Section 3.2. 

Let us now estimate the error in the term of degrees of freedom. 

R iS 
1) The region Q  '   . 

R r5 
As we have seen above there are 0(n) elements in the region Q  '   . 

T R 5 
Every element has 0(p ) degrees of freedom N(9").  Denoting by NtQ^' ) the 

R r? 
number of degrees of freedom in Q '  we get 

N(£^'5) = 0(np3) = 0(n4) 

when we used p(9") = jin.  Hence we have 

(5.1) |u_-xl        ^ CcrrN   = Ce"r*N  . 
0 H1(nR,s) 

e 

2) The region fl^'* 

R $       2 
As stated above the total number of elements in Q  '   is 0(n ).  Hence 

N(nR'*) = 0(n2p3) = 0(n5)  and e., A 

rN1/5   -r*N1/5 
(5.2) lVxl        * OryM   = Ce *    . 

e,A 

o 
3) The region Q  . 

R 
In fi. there are 0(n) elements and hence 

A 
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- 1/4    _ »1/4 
(5.3) |u -x\   .     o s QT

7N - Ce y N  . 
°  H1«^) A 

4) The region Q^. 

The number of elements in this region is 0(1) and hence 

- 1/3    _ „1/3 
(5.4) |u -*| .     _ * OryN   = Ce r N  . 

°  H^ng) 
5) The vertex elements. 

Here we have only 0(1) elements and hence the error is of order 

*M1/3 

Ce_y N  . 

Hence we have proven 

Theorem 3.5.1.  Let un  e £0(Q)  (see Section 3.2) be the exact solution of 
u   p 

the problem (2.7).  Further let the meshes 9Jl(<r,n), c <  1 are as in the 

Section 3.4 and let p(7) = fin, H > 0, properly chosen.  Then 

(5-5) l|uo " "FE'W) £ c    qf
inf   ,  |u -*'ifo, £ Ce_rNl/5 

X€S(.cr,t),p) H (ß) 

where N = dim S(o\7),p)  is the number of degrees of freedom,  y and C 

depend on £0(n), the distortion of the elements the solution u0 and the 
p u 

domain ß but are independent of N. 

Remark 5.1.  Theorem 3.5.1 follows from (5.2)(5.3)(5.4).  We see that the 

1/5 
factor N    is due to the vertex-edge singularly of the solution.  Hence we 

can expect that the rate e      will be visible only for large N i.e. 

-yH        1 
high accuracy and for smaller accuracies we can expect the rate e   , j< a < 

1 
=.  We will see it in the next section. 

Remark 5.2.  We assumed in the Theorem 5.1 that the (pull-back) polynomials 

are at the same degree p in T) ,T) ,7)  in all elements.  It is possible to 
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prove that the error in (5.5) holds with better constants if the degree of the 

elements is different in different elements and in different directions in 

T)i, i = 1,2,3. 

Remark 5.3.  In [12] we have proven that in the one dimension and the 

-rNa 
function of the analogous type as here the exponential rate is €   , a = 1/2 

and a cannot be made larger for any mesh and any degrees of the polynomials. 

-3"N      1 
We conjecture that the exponential rate e   ,  a = ■=    in 3 dimensions cannot 

be improved also if any mesh and any anisotropic degree distributions would be 

considered. 

Similarly we can prove 

Theorem 3.5.2.  Let u  be the exact solution of the Problem 2.7 and be 

analytic on Q.  Consider the meshes DIKO-.TJ) with c = 1 (hence 0Jt(<r,T)) has 

only finite number of elements independently of n) and let pO") = fin, >x > 0. 

Then 

1/3 
||u - u || *  C    inf   |u - *| * Ce"™  . 

XeS((r,7),p) 

Remark 5.4.   For the results mentioned above see also [17]. 

3.6.  A numerical example 

In this section we will show a typical numerical example.  Consider 

domain shown in the Fig. 3.6.1 and 3.6.2 and the problem 

Au = 0   on Q. 

The boundary conditions are 

i)  u = 0 on BFHGQKD, ABDC, AEFB, ACNE, PRKQ,  SGHF,  BFHGQKD, 

ii)  |^ = 0 on SLRPRQG, MJHFEN, MNCDKRL, 
on 

fr) 
iii) Ö— = cos l^rH  on the bottom surface. 
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Fig. 3.6.1   The domain Q    and the scheme of the mesh 

Fig. 3.6.2   The domain Q and the scheme of the mesh 

We constructed the geometrical meshes of the type described in the previous 

subsections with <r = 0.15.  One of the scheme of the meshes (elements 

49 



surfaces) is shown in the figures.  Analogously as in the two dimensional case 

for every mesh characterized by n=i, i = 1.....7 we solve the problem by 

p = 2 8.  Theorem 3.5.1 suggests that the error measured in the energy 

-*N1/a norms behaves as e      where a s  5 and we can expect that we will see 

4 < a s 5 in the computation.  Hence we plot the relative error  Hell™ in 

A/a 
the scale log Hell—, x N  .  Then we will expect that of the error of 

the h-p version will decay linearly.  In the Fig. 3.7.3 we show the errors for 

a = 4 and in Fig. 3.7.4 for a = 5. 
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We see that the h-p version converges exponentially with |le| 
ER 

Ce 
-3-N 

1/a 
4 < a ^ 5 as expected in the range of the computation. 

Remark 6.1.  The exact solution is of course not known.  We computed the 

strain energy &    of the exact solution by extrapolation and the error of the 

2 
finite solution is then lle|L = £(UEXACT) ~ £(uFE). 

Remark 6.2. The above example was computed by Dr. B. Anderson (Aeronautical 

Institute of Sweden) using the program STRIPE (developed in the Aeronautical 

Institute). 

51 



References 

1. Babuska, I., Guo, B.Q. (1987).  The Theory and Practice of the h-p 
version of the Finite Element Method.  Comp. Meth. in Partial Diff. 
Equations - VI, R. Vichnevesky R.S. Stepleman eds., 241-247. 

2. Babuska, I., Suri, M. (1994).  The p and h-p versions of the finite 
element method.  An overview.  Comp. Meth. Appl. Mech. Engg. 80, 5-26. 

3. Babuska, I., Guo, B.Q. (1992).  The h,p and h-p version of the finite 
element method; basic theory and applications, Advances in Engineering 
Software, 159-174. 

4. Babuska, I., Guo, B.Q. (1988).  Regularity of the solutions of elliptic 
problems with piecewise analytic data.  Part I.  Boundary Value Problems 
for Linear Elliptic Equations of Second Order, SIAM J. Math. Anal. 19, 
172-203. 

5. Babuska, I., Guo, B.Q. (1989).  Regularity of the solutions of elliptic 
problems with piecewise analytic data.  Part II. The trace spaces and 
applications to the Boundary value problem with Non-homogeneous boundary 
conditions.  SIAM J. Math. Anal. 20, 765-781. 

6. Guo, B.Q., Babuska, I. (1993).  On the regularity of elasticity problems 
with piecewise analytic data.  Advances in Applied Mathematics 14, 
307-347. 

7. Babuska, I., Guo, B.Q., and Osborn, J.E. (1989).  Regularity and 
numerical solutions of eigenvalue problems with peicewise analytic data, 
SIAM J. Num. Anal. 26, 1534-1560. 

8. Babuska, I., Guo, B.Q. (1989). The h-p version of the finite element 
method for problem with non-homogenous essential boundary conditions, 
Comp. Meth. Appl. Math- Engg. 74, 1-28. 

9. Guo, B.Q., Babuska, I (1986).  The h-p version of the finite element 
method. Part I.  The basic approximation results.  Comp. Mech. 1,  21-41. 

10. Guo, B.Q., Babuska, I. (1986).  The h-p version of the finite element 
method, Part II.  General results and applications.  Comp. Mech. 1, 
203-220. 

11. Babuska, I., Guo, B.Q. (1988).  The h-p version of the finite element 
method for domains with curved boundaries.  SIAM J. Numer. Anal. 25, 
837-861. 

12. Gui, A., Babuska, I. (1986).  The h-p versions of the finite element 
method in one dimension. Part I, the error analysis of the p-version; 
Part II, the error analysis of the h and h-p versions, Numer. Math. 43, 
577-612, 613-657. 

52 



13. Guo, B.Q. (1988).  The h-p version of the finite element method for 
elliptic equations of 2m order.  Num. Math. 53, 199-224. 

14. Babuska, I, Eleman. H.C., Markley, K. (1992).  Parallel implementation of 
the h-p version of the finite element method for a shared memory 
architecture SIAM J. Sei. STat. Comp. 13, 1433-1450. 

15. Babuska, I., Elman, H.C. (1993).  Performance of the h-p version of the 
finite element method with various elements.  Internat. J. Num. Meth. 
Engg. 36, 2503-2533. 

16. Babuska, I., Guo, B.Q.  The h-p version of the fintie element method in 3 
dimenions.  To appear. 

17. Guo, B.Q. (1994).  The h-p version of the finite element method for 
solving boundary value problems in polyhedral domains.  Boundary value 
problems and integral equations in nonsmooth domains. M. Costabel, 
M. Dauge, S. Nicaise, eds., 101-120. 

53 



The Laboratory for Numerical Analysis is an integral part of the Institute for Physical 
Science and Technology of the University of Maryland, under the general administration of the 
Director, Institute for Physical Science and Technology. It has the following goals: 

To conduct research in the mathematical theory and computational implementation of 
numerical analysis and related topics, with emphasis on the numerical treatment of 
linear and nonlinear differential equations and problems in linear and nonlinear algebra. 

To help bridge gaps between computational directions in engineering, physics, etc., and 
those in the mathematical community. 

To provide a limited consulting service in all areas of numerical mathematics to the 
University as a whole, and also to government agencies and industries in the State of 
Maryland and the Washington Metropolitan area. 

To assist with the education of numerical analysts, especially at the postdoctoral level, 
in conjunction with the Interdisciplinary Applied Mathematics Program and the 
programs of the Mathematics and Computer Science Departments. This includes active 
collaboration with government agencies such as the National Institute of Standards and 
Technology. 

To be an international center of study and research for foreign students in numerical 
mathematics who are supported by foreign governments or exchange agencies 
(Fulbright, etc.). 

Further information may be obtained from Professor I. BabuSka, Chairman, Laboratory for 
Numerical Analysis, Institute for Physical Science and Technology, University of Maryland, College 
Park, Maryland 20742-2431. 


